

IEC 60749-22-2

Edition 1.0 2025-11

INTERNATIONAL STANDARD

**Semiconductor devices - Mechanical and climatic test methods -
Part 22-2: Bond strength - Wire bond shear test methods**

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyright © 2025 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat
3, rue de Varembé
CH-1211 Geneva 20
Switzerland

Tel.: +41 22 919 02 11
info@iec.ch
www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search -

webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD	4
1 Scope	6
2 Normative references	6
3 Terms and definitions	6
3.1 Terms and definitions	7
3.2 Terms and definitions applicable to Annex B	8
4 Apparatus and material required	8
4.1 Inspection equipment	8
4.2 Measurement equipment	8
4.3 Workholder	9
4.4 Bond shear equipment	9
4.5 Bond shear chisel tool setup	9
5 Procedure	9
5.1 Calibration	9
5.2 Visual examination of bonds to be tested after decapsulation	10
5.2.1 Usage of visual examination	10
5.2.2 Bond pad examination and acceptability criteria for both Al and Cu bond pad metallization	10
5.2.3 Copper bond and Cu wire examination and acceptability criteria	10
5.3 Measurement of the ball bond diameter to determine the ball bond shear failure criteria	10
5.4 Performing the bond shear test	11
5.5 Examination of sheared bonds	12
5.6 Bond shear codes for ball bonds	12
5.6.1 General	12
5.6.2 Type 1 – Bond lift	16
5.6.3 Type 2 – Bond shear	17
5.6.4 Type 3 – Cratering	19
5.6.5 Type 4 – arm contacts specimen (bonding surface contact)	21
5.6.6 Type 5 – shearing skip	21
5.6.7 Type 6 – Bond pad (or bonding surface) lift	21
5.7 Bond shear data	22
6 Summary	22
Annex A (informative) Performing this test method on "stitch on ball" bonds	23
Annex B (informative) Performing this test method on ultrasonic wedge bonds	25
B.1 General	25
B.2 Additions and modifications of the main text	25
B.2.1 Addition to Clause 1	25
B.2.2 Addition to Clause 3	25
B.2.3 Replacement of 4.4	25
B.2.4 Replacement of 5.4	26
B.2.5 Replacement of 5.5	26
B.2.6 Additional text to 5.6	26
B.2.7 Replacement of Clause 6	26
Annex C (informative) Performing shear testing when a tool cannot reach below bond centreline	27

Annex D (informative) Concerns with decapsulation processes for devices with copper wirebonds.....	29
Annex E (informative) Bond contact area – Valid method for comparing shear force	32
Bibliography.....	34
 Figure 1 – Bond shear set-up for bond on die bonding pad	7
Figure 2 – Proper height placement of shear tool with respect to ball centre line	9
Figure 3 – Ball bond measurement: side view and top view (for symmetrical versus asymmetrical)	11
Figure 4 – Type 1: Bond lift – Gold aluminium	12
Figure 5 – Type 1: Bond lift – Copper/aluminium, copper/copper and gold/gold.....	12
Figure 6 – Type 1: Bond lift – All metal systems on leadframe or substrate.....	13
Figure 7 – Type 2: Bond shear – All metal systems – Variation A – Separation within bonding surface metalization	13
Figure 8 – Type 2: Bond shear – Gold/aluminium – Variation B – Separation wholly within intermetallic layer.....	13
Figure 9 – Type 2: Bond shear – All metal systems and surfaces, except Gold/aluminium – Variation B – Separation at bonding surface.....	14
Figure 10 – Type 2: Bond shear – All metal systems and bonding surfaces – Variation C – Separation at material interface and within bulk material.....	14
Figure 11 – Type 2: Bond shear – All metal systems – Variation D – Separation within ball bond	14
Figure 12 – Type 2: Bond shear – All metal systems on leadframe or substrate – Variation D – Separation within ball bond.....	15
Figure 13 – Type 3: Cratering	15
Figure 14 – Type 4: Bonding surface contact.....	15
Figure 15 – Type 5: Shearing skip	16
Figure 16 – Type 6: Bonding pad surface lift	16
Figure 17 – Type 6: Leadframe or substrate bond pad or bonding surface metalization lift.....	16
Figure 18 – Imprints on Al pad from lifted bonds with no evidence of shearing (Type 1).....	17
Figure 19 – Shear of aluminium pad (with copper wire) (Type 2 – Variation A)	18
Figure 20 – Shear wholly within gold/aluminium intermetallic layer (Type 2 – Variation B)	18
Figure 21 – Shear in bulk copper ball bond and at material interface (Type 2 – Variation C)	19
Figure 22 – Shear wholly within gold ball bond (Type 2 – Variation D).....	19
Figure 23 – Shear wholly within Cu ball bond (Type 2 – Variation D).....	19
Figure 24 – Bond pad cratering after shear test	20
Figure 25 – Bond pad cratering (pad and ball view) and validation of crack and thin Al on another pad.....	20
Figure 26 – Images of shear tool contacting the bonding surface (shear tool set too low)	21
Figure 27 – Images of shearing skip (shear tool set too high).....	21
Figure 28 – Images of bonding surface lifting	22
Figure A.1 – Top view of "stitch on ball" bond	23
Figure A.2 – Side view of "stitch on ball" bond	23

Figure A.3 – Die to die bonding.....	24
Figure A.4 – "Reverse" bond, with ball on leadframe	24
Figure C.1 – Passivation preventing proper height placement of shear tool.....	27
Figure C.2 – Remnant due to shear tool placement above centreline	27
Figure C.3 – Views of excessive Al splash	28
Figure D.1 – Images of copper ball bonds showing severe damage from etching process	29
Figure D.2 – Comparison images showing degree of Cu attack due to two different etchants	29
Figure D.3 – Stitch bond after decapsulation using laser ablation	30
Figure D.4 – Die and wirebonds decapsulated using laser ablation	31
Figure E.1 – Sample cross section of a copper wire bond	32
Figure E.2 – Image analysis of pixel distribution within the fitted circle (represents ball)	33
Figure E.3 – Images of "optical versus SEM" correlation study	33

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Semiconductor devices - Mechanical and climatic test methods - Part 22-2: Bond strength - Wire bond shear test methods

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at <https://patents.iec.ch>. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 60749-22-2 has been prepared by IEC technical committee 47: Semiconductor devices. It is an International Standard.

This International Standard is to be used in conjunction with IEC 60749-22-1:2025.

This first edition, together with the first edition of IEC 60749-22-1, cancels and replaces the first edition IEC 60749-22 published in 2002. It is based on JEDEC document JESD22-B120. It is used with permission of the copyright holder, JEDEC Solid State Technology Association.

This edition includes the following significant technical changes with respect to the previous edition:

- a) Major update, including new techniques and use of new materials (e.g. copper wire) involving a complete rewrite as two separate subparts (this document and IEC 60749-22-1).

The text of this International Standard is based on the following documents:

Draft	Report on voting
47/2959/FDIS	47/2981/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 60749 series, published under the general title *Semiconductor devices - Mechanical and climatic test methods*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

1 Scope

This part of IEC 60749 establishes a means for determining the strength of a ball bond to a die or package bonding surface and can be performed on pre-encapsulation or post-encapsulation devices. This measure of bond strength is extremely important in determining two features:

- a) the integrity of the metallurgical bond which has been formed, and
- b) the quality of ball bonds to die or package bonding surfaces.

This test method covers thermosonic (ball) bonds made with small diameter wire from 15 µm to 76 µm (0,000 6" to 0,003").

This test method can only be used when the bonds are large enough to allow for proper contact with the shear test chisel and when there are no adjacent interfering structures that would hinder the movement of the chisel. For consistent shear results the ball height will be at least 4,0 µm (0,000 6") for ball bonds, which is the current state of the art for bond shear test equipment at the time of this revision.

This test method can also be used on ball bonds that have had their wire removed and on to which a second bond wire (typically a stitch bond) is placed. This is known as "stitch on ball" and "reverse bonding". See Annex A for additional information.

The wire bond shear test is destructive. It is appropriate for use in process development, process control, or quality assurance, or both.

This test method can be used on ultrasonic (wedge) bonds, however its use has not been shown to be a consistent indicator of bond integrity. See Annex B for information on performing shear testing on wedge bonds.

This test method does not include bond strength testing using wire bond pull testing. Wire bond pull testing is described in IEC 60749-22-1.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60749-22-1, *Semiconductor devices - Mechanical and climatic test methods - Part 22-1: Bond strength testing - Wire bond pull test methods*